\begin{tabbing} comp{-}atom{-}ap($g$;$f$;$x$;$a$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=let ${\it f'}$ = $\lambda$$a$.$g$$\,\circ\,$$f$ in \+ \\[0ex]let ${\it x'}$ = $\lambda$$a$.$x$ in \\[0ex]let $F$ = $\lambda$$b$,$c$. ${\it f'}$($b$,${\it x'}$($c$)) in \\[0ex]let $L$ = atoms{-}in($F$) in \\[0ex]let $b$ = new{-}atom(($a$.$L$)) in \\[0ex]i\=f $F$($b$,$a$)=$_{2}$$a$$\in$Atom$\rightarrow$ inr(${\it f'}$($b$))\+ \\[0ex]; $F$($a$,$b$)=$_{2}$$a$$\in$Atom$\rightarrow$ inl($\lambda$$f$.$g$($f$(${\it x'}$($b$)))) \-\\[0ex]else inr($\lambda$$x$.hd(list{-}diff(AtomDeq;monitor((${\it f'}$($b$,$x$)));$b$.$L$))) fi \- \end{tabbing}